close
原題
 
由題意可知:
x+y=2a
y=x^2代入
所以x+x^2=2a
 
因為x=a+b-c,故x為三質數之加減值,故必為整數,
故上述方程式有整數解。
 
又a為質數,故2a之質因數只有二個,即2和a
所以x+x^2=2a之因式分解只得為
(x-2)(x+a)或(x+2)(x-a)
 
當因式分解為(x-2)(x+a)時,a=3,符合題意。
當因式分解為(x+2)(x-a)時,a=1,a不為質數,矛盾。
 
故a=3,故x=2或-3
 
當x=2時,y=4,且y-x=2(c-b)=2
故c-b=1,又b,c為質數,故上開唯一解為b=2,c=3
所以z=b+c-a=2+3-3=2,
不符合z-y=d^2,矛盾。
 
當x=-3時,y=9,且y-x=2(c-b)=12
故c-b=6,亦即c,b同為奇數,
又x+y+z=a+b+c,
得6+z=3+b+c,故知z亦為奇數
代入z-y=d^2
z-3=d^2,故知d為偶數,故d=2,z=49
 
又z=b+c-a,得b+c=52,
前式可知c-b=6,故b=23,c=29
 
整理如下,此解亦為唯一
(a,b,c,d)=(3,23,29,2)
(x,y,z)=(-3,9,49)
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 piny 的頭像
    piny

    piny的部落格

    piny 發表在 痞客邦 留言(0) 人氣()